

Atmospheric Infrared Sounder

Radiometric Calibration Changes For V6

Denis Elliott
(reporting on work done by
Margie Weiler and Evan Manning)

April 23, 2010

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

Outline

- Introduction—why new radiometric calibration coefficients have been derived
- AIRS radiometric calibration equation
- Comparison of the pre-flight data analyses used to derive old (V5 and earlier) and new coefficients
- AIRS radiance differences, old vs. new
- Radiometry issues not addressed by the new set
- Plans for V6 and V7
 - L1B radiometry will not change in V6
 - The revised coefficients will be implemented in L1C as a research product
 - Several issues still need work for V7

Introduction

- In a 2008 SPIE paper, Tom Pagano showed that the AIRS radiometric calibration is excellent:
 - based on the transfer of the NIST-traceable calibration of an external large-area blackbody (LABB) to the internal onboard calibrator (OBC)
 - accuracy is predicted to be 0.2K, 3 sigma
- That paper reported planned adjustments to the calibration coefficients for PGE V6 which would ensure this level of accuracy
- This talk reports on a parallel investigation by Margie Weiler (with support from Evan Manning) that has resulted in further improvements to those coefficients
- The effects of these new coefficients should be an additional reduction in the estimated radiometric error
- The purpose is to improve the accuracy for climate trending.
 There is little or no effect on weather forecasting.

AIRS Radiometric Calibration Equation

Atmospheric Infrared Sounder

$$N_{Sc} = \frac{a_0(\theta_j) + a_{1,i}(dn_j - dn_{sv}) + a_2(dn_j - dn_{sv})^2}{1 + p_r p_t \cos[2(\theta_j - \delta)]}$$

and

$$a_0(\theta_j) = P_{sm} p_r p_t [\cos 2(\theta_j - \delta) + \cos 2\delta]$$

 N_{sc} = scene radiance

 P_{sm} = Planck radiation from the scan mirror

 θ_i = scan angle of footprint j

 dn_i = counts at footprint j

dn_{sv} = smoothed counts at nearby space views

p_r = polarization amount from scan mirror

p_t = polarization amount from spectrometer

 δ = polarization phase angle in spectrometer

 a_0 = offset coefficient (scan angle dependent)

 a_1 = gain-related coefficient

a₂ = non-linearity coefficient

In-Flight Calibration (L1B)

- dn_{sv} is calculated by smoothing space view measurements in 10 neighboring scans
- a_1 is determined dynamically from OBC-look data (averaged over each granule), corrected by a parameter (ϵ_{OBC}) that represents the effective OBC emissivity
- a₀ is determined dynamically from the scan angle, scan mirror temperature, and the polarization parameters
- That leaves 4 static parameters per channel that must be obtained prior to science processing $(\epsilon_{OBC}, a_2, p_r p_t, and \delta)$

Pre-flight Data Used To Determine the V5 Coefficients (1 of 2)

- During the AIRS ground T/Vac tests, measurements were made with AIRS viewing a NIST-traceable calibrated black body (LABB) at a series of temperatures, at two scan angles (near nadir and near -40°) separately for A and B detectors
 - These tests are collectively called the "stepped blackbody tests"
- The nadir data and -40° data were fit separately to secondorder polynomials. The intercepts a₀ at the two scan angles were used to determine the polarization coefficients
 - Because the results were noisy, the values of p_rp_t were adjusted to better fit a model of the spectrometer
- a₂ was calculated from the nadir data
- ε_{OBC} was determined from nadir data to force agreement between model radiances and OBC observations

Pre-flight Data Used To Determine the V5 Coefficients (2 of 2)

- δ was set to 0 as described in Tom Pagano's SPIE paper
- The A-only and B-only coefficients were then combined and smoothed according to the states calculated from channel noise data during the tests
 - Thus the old set does not have separate coefficients for A and B detectors
- Since launch, we have been using the single set of these parameters that was determined by the above analysis

Revised Data Analysis (v6k VERSION)

- Tom's SPIE paper describes a parameter set v6k
- The major change from the V5 set was to remove the model-based adjustment to the polarization factor p_rp_t
- This resulted in improved residuals (calculated minus measured brightness temperature), mostly for the nadir data
- The work reported in this talk (mostly due to Margie Weiler) has made further improvements in the methodology

Revised Data Analysis (N40rab = new set) (1 of 2)

- Ground test data called "rvs" (response vs. multiple scan angles, viewing a 308K blackbody) were fit simultaneously with <u>all</u> the stepped blackbody data
 - That is, for the stepped blackbody data the nadir and -40° data were <u>not</u> fit separately, but instead both were included with the rvs data in two fits per channel (an A-only and a B-only fit)
- As in v6k, the model adjustment to the polarization factor p_rp_t was dropped—values from the fits were used
- δ was not set to 0—the values that came out of the fitting process were preserved

Revised Data Analysis (N40rab = new set) (2 of 2)

- A-only and B-only coefficients were not combined into one set
 - Instead, they were combined appropriately for each on-board gain table ever used in flight (3 so far with a 4th coming soon) (requires minor software change)
- The selection of footprints was improved and, the space look offsets used the same sliding 10-scan-linear-fit smoothing algorithm that is used in the current PGE
 - Each scene and calibration footprint has a different space look value
- Used exact scan angles for each footprint
- Fit all data points rather than means for each test temperature

Predicted Changes In AIRS Radiances Are Less Than About 0.1k For 250k Scenes

Atmospheric Infrared Sounder

Note: Some of the N40ab (=V6/L1C) - PGE (=V5) differences are due to the A/B smoothing done for V5 vs. separate A and B smoothing

Comparison Of Polarization Parameter Fits (black = new set)

Atmospheric Infrared Sounder

- New parameters compare reasonably well with those from ground polarization tests (p_r from scan mirror test, p_t and δ from IR Sensor test)
- They also compare reasonably well with values from fits to space looks in flight

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

New (N40rab) vs Old (V5) Radiances vs. Wavelength

Atmospheric Infrared Sounder

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

Implementation Plans And Discussion (1 of 4)

- As far as radiometry is concerned, V6 L1B will be the same as V5 L1b (old coefficient set used)
- The new coefficient set will be used in V6 L1C
- How V6 L1c will be packaged is still under discussion
 - stand-alone programs to convert between old and new radiances will be made available
 - an L1C research product may be generated for all data
 - routines may be provided for users to generate their own L1C products on demand

Implementation Plans And Discussion (2 of 4)

- Evan Manning will discuss the spectral calibration, noisy channel cleanup, and frequency resampling aspects of L1C in the next talk
- L1B products (calibrated radiances) will always be the primary L1 AIRS product, since they are NISTtraceable
- L1C products (cleaned up and resampled radiances) are helpful in a variety of applications, but their traceability to NIST standards is unclear

Implementation Plans And Discussion (3 of 4)

- Several issues still exist in AIRS radiometry that have not been affected by the new coefficients and are still being studied
 - In M8 there are significant differences in the resultant radiances using A-only channels versus B-only versus A +B
 - AIRS short-wave window channels show trends in deep convective clouds (very low scene temperatures) not seen by IASI or by either AIRS or IASI at Dome Concordia
 - Space looks and/or polarization parameters have changed slightly since launch
 - Unflagged pops exist

Implementation Plans And Discussion (4 of 4)

- The following two items may be related
 - At very low scene temperatures, overlap channels and window channels that are expected to produce very similar brightness temperatures instead see differences of 0.5K or so
 - Correction of detector scene coverage non-uniformity
 (C_{ii}) has not yet been implemented

Summary

- Revised analysis of pre-launch data has determined a new set of calibration coefficients which fit the pre-flight data better than the old coefficients
- Their effect on AIRS radiances is significant for climate studies, but not for weather forecasting
- The new coefficients by themselves do not solve some small but nagging problems with AIRS radiometry

For the future

- Plan for V6 and V7
 - L1B radiometry will not change in V6 and there will be no reprocessing of L1A or L1b at the GES DISC after V6 is delivered
 - L1C, including the new calibration coefficients,
 will be labeled a research product
 - Several issues (described earlier) still need work for V7
- In a forthcoming paper by Ken Overoye, Margie Weiler et. al., the new parameters will be incorporated into new estimates of the AIRS calibration accuracy

Atmospheric Infrared Sounder

Backup

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

New (N40rab) vs Old (V5) Radiances vs. Frequency

Atmospheric Infrared Sounder

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

New (N40rab) vs Old (V5) Radiances vs. Frequency (zoomed in)

Atmospheric Infrared Sounder

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged

New (N40rab) vs Old (V5) Radiances vs. Wavelength (zoomed in)

Atmospheric Infrared Sounder

Copyright 2010
California Institute of Technology
Government sponsorship acknowledged